journal articleresearch article

Structure and Conformational Variability of the Mycobacterium tuberculosis Fatty Acid Synthase Multienzyme Complex

Abstract

SummaryAntibiotic therapy in response to Mycobacterium tuberculosis infections targets de novo fatty acid biosynthesis, which is orchestrated by a 1.9 MDa type I fatty acid synthase (FAS). Here, we characterize M. tuberculosis FAS by single-particle cryo-electron microscopy and interpret the data by docking the molecular models of yeast and Mycobacterium smegmatis FAS. Our analysis reveals a porous barrel-like structure of considerable conformational variability that is illustrated by the identification of several conformational states with altered topology in the multienzymatic assembly. This demonstrates that the barrel-like structure of M. tuberculosis FAS is not just a static scaffold for the catalytic domains, but may play an active role in coordinating fatty acid synthesis. The conception of M. tuberculosis FAS as a highly dynamic assembly of domains revises the view on bacterial type I fatty acid synthesis and might inspire new strategies for inhibition of de novo fatty acid synthesis in M. tuberculosis

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.