journal articleresearch article

Monotonic Averages of Convex Functions

Abstract

AbstractWe investigate the monotonicity of various averages of the values of a convex (or concave) function at n equally spaced points. For a convex function, averages without end points increase with n, while averages with end points decrease. Averages including one end point are treated as a special case of upper and lower Riemann sums, which are shown to decrease and increase, respectively. Corresponding results for mid-point Riemann sums and the trapezium estimate require convexity or concavity of the derivative as well as the function. Special cases include some known results and some new ones, unifying them in a more systematic theory. Further applications include results on series and power majorization

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.