Limit theorems for supercritical branching random fields with immigration

Abstract

AbstractA measure-valued process which carries genealogical information is defined for a supercritical branching random field with immigration. This process counts the particles present at a final time whose ancestors had specified locations at given times in the past. A law of large numbers and a fluctuation limit theorem are proved for this process under a space-time scaling. The fluctuation limit is a nonstationary generalized Ornstein-Uhlenbeck process. An example of interest in transport theory and polymer chemistry is given

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.