Integration of wind and solar power in Europe: Assessment of flexibility requirements

Abstract

AbstractFlexibility is the ability of a power system to respond to changes in power demand and generation. Integrating large shares of variable renewable energy sources, in particular wind and solar, can lead to a strong increase of flexibility requirements for the complementary system, traditionally hydrothermal, which has to balance the fluctuations of variable generation. We quantify these flexibility requirements at the operational timescale of 1–12 hours and different spatial scales across Europe. Our results indicate that three major factors determine the ramping flexibility needed in future power systems: the penetration of variable renewables, their mix and the geographic system size. Compared to the variability of load, flexibility requirements increase strongly in systems with combined wind and PV (photovoltaics) contribution of more than 30% of total energy and a share of PV in the renewables mix above 20–30%. In terms of extreme ramps, the flexibility requirements of a geographically large, transnational power system are significantly lower than of smaller regional systems, especially at high wind penetration

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.