AbstractWe consider convergence of Markov chains with uncertain parameters, known as imprecise Markov chains, which contain an absorbing state. We prove that under conditioning on non-absorption the imprecise conditional probabilities converge independently of the initial imprecise probability distribution if some regularity conditions are assumed. This is a generalisation of a known result from the classical theory of Markov chains by Darroch and Seneta [6]
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.