AbstractWe investigate cellular automata as acceptors for formal languages. In particular, we consider real-time devices which are reversible on the core of computation, i.e., from initial configuration to the configuration given by the time complexity. This property is called real-time reversibility. We study whether for a given real-time CA working on finite configurations with fixed boundary conditions there exists a reverse real-time CA with the same neighborhood. It is shown that real-time reversibility is undecidable, which contrasts the general case, where reversibility is decidable for one-dimensional devices. Moreover, we prove the undecidability of emptiness, finiteness, infiniteness, inclusion, equivalence, regularity, and context-freedom. First steps towards the exploration of the computational capacity are done and closure under Boolean operations is shown
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.