AbstractWe generalize the notion of an MV-algebra in the context of residuated lattices to include non-commutative and unbounded structures. We investigate a number of their properties and prove that they can be obtained from lattice-ordered groups via a truncation construction that generalizes the Chang–Mundici Γ functor. This correspondence extends to a categorical equivalence that generalizes the ones established by D. Mundici and A. Dvurečenskij. The decidability of the equational theory of the variety of generalized MV-algebras follows from our analysis
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.