R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury

Abstract

R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury.BackgroundCyclin-dependent kinase (CDK) inhibition is a new therapeutic approach to proliferative glomerulonephritides. CDK2 is required for G1/S transition and DNA synthesis and is inhibited by CYC202 (R-roscovitine). Since podocytes express CDK2 in nephritis and since loss of podocytes contributes to glomerulosclerosis, the rationale of the present study was to test whether CDK2 inhibition is safe in instances of podocyte injury.MethodsRats with passive Heymann nephritis, a model of membranous glomerulonephritis, were treated (day 3 to 30) with vehicle, low (25 mg/kg/day), or high (50 mg/kg/day) doses of CYC202.ResultsOn day 27, blood pressure was normal in nephritic controls and was dose-dependently reduced by CYC202. Urinary albumin excretion did not differ between the groups on days 9, 16, 23, and 30. To investigate podocyte injury, we assessed the glomerular de novo expression of desmin, which was markedly up-regulated in almost all passive Heymann nephritis glomeruli but was not significantly different between the three groups. No tubulointerstitial de novo expression of desmin or alpha-smooth muscle actin (α-SMA), or tubulointerstitial monocyte/macrophage infiltration was noted in any group. Biologic activity of CYC202 was evident in the form of a dose-dependent decrease in the number of glomerular and tubulointerstitial mitotic figures as compared to vehicle alone. Glomerular immunostaining for cyclin D1, a marker for G0 to G1 transition, was significantly decreased in CYC202 treated groups at day 9.ConclusionWhereas inhibition of CDKs by CYC202 reduced intrarenal cell proliferation in passive Heymann nephritis it did not aggravate podocyte damage, suggesting that this novel therapeutic approach is safe in renal diseases characterized by podocyte injury

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.