AbstractWe prove that in a locally finite variety that has definable principal congruences (DPC), solvable congruences are nilpotent, and strongly solvable congruences are strongly abelian. As a corollary of the arguments we obtain that in a congruence modular variety with DPC, every solvable algebra can be decomposed as a direct product of nilpotent algebras of prime power size
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.