Definable principal congruences and solvability

Abstract

AbstractWe prove that in a locally finite variety that has definable principal congruences (DPC), solvable congruences are nilpotent, and strongly solvable congruences are strongly abelian. As a corollary of the arguments we obtain that in a congruence modular variety with DPC, every solvable algebra can be decomposed as a direct product of nilpotent algebras of prime power size

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.