AbstractWe prove a law of large numbers for a class of Zd-valued random walks in dynamic random environments, including non-elliptic examples. We assume for the random environment a mixing property called conditional cone-mixing and that the random walk tends to stay inside wide enough space–time cones. The proof is based on a generalization of a regeneration scheme developed by Comets and Zeitouni (2004) [5] for static random environments and adapted by Avena et al. (2011) [2] to dynamic random environments. A number of one-dimensional examples are given. In some cases, the sign of the speed can be determined
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.