AbstractWe verify a recent conjecture of Kenyon/Szendrői by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson–Thomas theory of a non-commutative resolution of the conifold singularity {x1x2−x3x4=0}⊂C4. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp [Noam Elkies, Greg Kuperberg, Michael Larsen, James Propp, Alternating sign matrices and domino tilings. II, J. Algebraic Combin. 1 (3) (1992) 219–234]
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.