The CNN problem and other k-server variants

Abstract

AbstractWe study several interesting variants of the k-server problem. In the CNN problem, one server services requests in the Euclidean plane. The difference from the k-server problem is that the server does not have to move to a request, but it has only to move to a point that lies in the same horizontal or vertical line with the request. This, for example, models the problem faced by a crew of a Certain News Network trying to shoot scenes on the streets of Manhattan from a distance; for any event at an intersection, the crew has only to be on a matching street or avenue. The CNN problem contains as special cases two important problems: the BRIDGE problem, also known as the cow-path problem, and the weighted 2-server problem in which the 2 servers may have different speeds. We show that any deterministic online algorithm has competitive ratio at least 6+17. We also show that some successful algorithms for the k-server problem fail to be competitive. In particular, no memoryless randomized algorithm can be competitive.We also consider another variant of the k-server problem, in which servers can move simultaneously, and we wish to minimize the time spent waiting for service. This is equivalent to the regular k-server problem under the L∞ norm for movement costs. We give a 12k(k+1) upper bound for the competitive ratio on trees

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.