AbstractThe intracellular cytoskeleton is an active dynamic network of filaments and associated binding proteins that control key cellular properties, such as cell shape and mechanics. Due to the inherent complexity of the cell, reconstituted model systems have been successfully employed to gain an understanding of the fundamental physics governing cytoskeletal processes. Here, we review recent advances and key aspects of these reconstituted systems. We focus on the importance of assembly kinetics and dynamic arrest in determining network mechanics, and highlight novel emergent behavior occurring through interactions between cytoskeletal components in more complex networks incorporating multiple biopolymers and molecular motors
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.