AbstractA resolvable (balanced) path design, RBPD(v, k, λ) is the decomposition of λ copies of the complete graph on v vertices into edge-disjoint subgraphs such that each subgraph consists of vk vertex-disjoint paths of length k − 1 (k vertices). It is shown that an RBPD(v, 3, λ) exists if and only if v ≡ 9 (modulo 12/gcd(4, λ)). Moreover, the RBPD(v, 3, λ) can have an automorphism of order v3. For k > 3, it is shown that if v is large enough, then an RBPD(v, k, 1) exists if and only if v ≡ k2 (modulo lcm(2k − 2, k)). Also, it is shown that the categorical product of a k-factorable graph and a regular graph is also k-factorable. These results are stronger than two conjectures of P. Hell and A. Ros
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.