AbstractWe use a new method in the study of Fisher–KPP reaction–diffusion equations to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one spatial dimension. We also obtain new estimates on entire solutions of some KPP reaction–diffusion equations in several spatial dimensions. Our method is based on the construction of sub- and super-solutions to the non-linear PDE from solutions of its linearization at zero
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.