research

Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid

Abstract

AbstractWave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of elasticity. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The frequency equations that include the interaction between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel functions. The numerical calculations are carried out for the non-dimensional frequency, phase velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves. The results reveal that the proposed method is very effective and simple and can be applied to other bar of different cross section by using proper geometric relation

Similar works

Full text

thumbnail-image
Last time updated on 28/04/2017

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.