Machine Learning for benthic sand and maerl classification and coverage estimation in coastal areas around the Maltese Islands

Abstract

AbstractAnalysis of the seabed composition over a large spatial scale is an interesting yet very challenging task. Apart from the field work involved, hours of video footage captured by cameras mounted on Remote Operated Vehicles (ROVs) have to be reviewed by an expert in order to classify the seabed topology and to identify potential anthropogenic impacts on sensitive benthic assemblages. Apart from being time consuming, such work is highly subjective and through visual inspection alone, a quantitative analysis is highly unlikely to be made. This study investigates the applicability of various Machine Learning techniques for the automatic classification of the seabed into maerl and sand regions from recorded ROV footage. ROV data collected from depths ranging between 50m and 140m and at 9.5km from the northeast coastline of the Maltese Islands, is processed. Through the application of the presented technique, 5.23GB of data corresponding to 2h and 24min of footage which was collected during June 2013, was initially cleaned and classified. An estimate for the percentage cover of the two benthic habitats (sandy seabed and maerl) was also computed by using artifacts encountered during the ROV survey and of known dimensions as a reference. Unlike other automatic seabed mapping techniques, the presented prototype processes video footage captured by a down-facing camera and not through acoustic backscatter. Image data is easier and much cheaper to capture. Promising results that indicate a very good degree of agreement between the true and predicted habitat type distribution values, were obtained

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.