Skew-prime polynomial matrices: The polynomial-model approach

Abstract

AbstractWe examine the concept of skew-primeness of polynomial matrices in terms of the associated polynomial model. It is shown that skew-primeness can be characterized in terms of the property of decomposition of a vector space relative to an endomorphism. This basic result is then applied to the special case of nonsingular polynomial matrices. We investigate the nonuniqueness of skew-complements of a skew-prime pair. It is shown that the space of equivalence classes of skew-complements is in bijective correspondence with a finite-dimensional linear space. Finally, the equivalence of the solutions to the problem of output regulation with internal stability obtained via geometric methods and via polynomial matrix techniques is shown explicitly

Similar works

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.