'Society for Industrial & Applied Mathematics (SIAM)'
Doi
Abstract
Content is increasingly available in multiple modalities (such as images, text, and video), each of which provides a different representation of some entity. The cross-modal retrieval problem is: given the representation of an entity in one modality, find its best representation in all other modalities. We propose a novel approach to this problem based on pairwise classification. The approach seamlessly applies to both the settings where ground-truth annotations for the entities are absent and present. In the former case, the approach considers both positive and unlabelled links that arise in standard cross-modal retrieval datasets. Empirical comparisons show improvements over state-of-the-art methods for cross-modal retrieval.9 page(s
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.