Abstract

The Novel Bacterial Topoisomerase Inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that do not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecules. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms, and Mycobacterium tuberculosis No cross-resistance with quinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC90 values were 4 and 8 μg/mL against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies-of-resistance typically 100 μM). In summary, the compounds' distinct mechanism-of-action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents

Similar works

Full text

thumbnail-image

University of Strathclyde Institutional Repository

redirect
Last time updated on 18/04/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.