Location of Repository

In vitro T-cell activation of monocyte-derived macrophages by soluble messengers or cell-to-cell contact in bovine tuberculosis

By E Liébana, A Aranaz, M Welsh, S D Neill and J M Pollock

Abstract

The macrophage plays a dual role in tuberculosis, promoting not only protection against mycobacteria, but also survival of the pathogen. Macrophages inhibit multiplication of mycobacteria but also act in concert with lymphocytes through presentation of antigens to T cells. Studies in animal and human infections have suggested a correlation of in vitro growth rates of mycobacteria with in vivo virulence, using uracil uptake to assess mycobacterial metabolism. This study found that blood-derived, non-activated bovine macrophages were capable of controlling Mycobacterium bovis bacillus Calmette–Guérin growth for up to 96 hr, but were permissive to intracellular growth of virulent M. bovis. The present investigation compared the in vitro modulation of these macrophage activities by cytokine-rich T-cell supernatants or cell-to-cell contact. On the one hand, treatment of cultured monocytes with mitogen-produced T-cell supernatants promoted morphological changes suggestive of an activation status, enhanced the antigen presentation capabilities of monocytes and up-regulated major histocompatibility complex class II expression. However, this activation was not associated with enhanced anti-M. bovis activity. On the other hand, incubation of infected monocytes with T-cell populations resulted in proportionally increased inhibition of M. bovis uracil uptake. This inhibition was also seen using cells from uninfected animals and indicated the necessity for cell-to-cell contact to promote antimycobacterial capability

Topics: Original Articles
Publisher: Blackwell Science Inc
OAI identifier: oai:pubmedcentral.nih.gov:2327000
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.