Article thumbnail

Phosphorylation of IRF-3 on Ser 339 Generates a Hyperactive Form of IRF-3 through Regulation of Dimerization and CBP Association▿

By Jean-François Clément, Annie Bibeau-Poirier, Simon-Pierre Gravel, Nathalie Grandvaux, Éric Bonneil, Pierre Thibault, Sylvain Meloche and Marc J. Servant

Abstract

The IκB kinase-related kinases, TBK1 and IKKi, were recently shown to be responsible for the C-terminal phosphorylation of IRF-3. However, the identity of the phosphoacceptor site(s) targeted by these two kinases remains unclear. Using a biological assay based on the IRF-3-mediated production of antiviral cytokines, we demonstrate here that all Ser/Thr clusters of IRF-3 are required for its optimal transactivation capacity. In vitro kinase assays using full-length His-IRF-3 as a substrate combined with mass spectrometry analysis revealed that serine 402 and serine 396 are directly targeted by TBK1. Analysis of Ser/Thr-to-Ala mutants revealed that the S396A mutation, located in cluster II, abolished IRF-3 homodimerization, CBP association, and nuclear accumulation. However, production of antiviral cytokines was still present in IRF-3 S396A-expressing cells. Interestingly, mutation of serine 339, which is involved in IRF-3 stability, also abrogated CBP association and dimerization without affecting gene transactivation as long as serine 396 remained available for phosphorylation. Complementation of IRF-3-knockout mouse embryonic fibroblasts also revealed a compensatory mechanism of serine 339 and serine 396 in the ability of IRF-3 to induce expression of the interferon-stimulated genes ISG56 and ISG54. These data lead us to reconsider the current model of IRF-3 activation. We propose that conventional biochemical assays used to measure IRF-3 activation are not sensitive enough to detect the small fraction of IRF-3 needed to elicit a biological response. Importantly, our study establishes a molecular link between the role of serine 339 in IRF-3 homodimerization, CBP association, and its destabilization

Topics: Virus-Cell Interactions
Publisher: American Society for Microbiology (ASM)
OAI identifier: oai:pubmedcentral.nih.gov:2292984
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles