Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results

Abstract

The recent M9 Tohoku Japan earthquake of March 11, 2011 was the largest recorded earthquake ever to hit this nation. We retrospectively analyzed the temporal and spatial variations of four different physical parameters- outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit tomography and critical frequency foF2. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3‐11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which return to normal after the main earthquake. We found a positive correlation between the atmospheric and ionospheric anomalies and the Tohoku earthquake. This study may lead to a better understanding of the response of the atmosphere /ionosphere to the Great Tohoku earthquake. 1

Similar works

Full text

thumbnail-image

CiteSeerX

redirect
Last time updated on 12/04/2017

This paper was published in CiteSeerX.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.