Skip to main content
Article thumbnail
Location of Repository

Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart

By Jorge A Sánchez, María C García, Virendra K Sharma, Kate C Young, Mohammed A Matlib and Shey-Shing Sheu


L-type Ca2+ channels play an important role in vital cell functions such as muscle contraction and hormone secretion. Both a voltage-dependent and a Ca2+-dependent process inactivate these channels. Here we present evidence that inhibition of the mitochondrial Ca2+ import mechanism in rat (Sprague-Dawley) ventricular myocytes by ruthenium red (RR), by Ru360 or by carbonyl cyanide m-chlorophenylhydrazone (CCCP) decreases the magnitude of electrically evoked transient elevations of cytosolic Ca2+ concentration ([Ca2+]c). These agents were most effective at stimulus rates greater than 1 Hz.RR and CCCP also caused a significant delay in the recovery from inactivation of L-type Ca2+ currents (ICa). This suggests that sequestration of cytosolic Ca2+, probably near the mouth of L-type Ca2+ channels, into mitochondria during cardiac contractile cycles, helps to remove the Ca2+-dependent inactivation of L-type Ca2+ channels.We conclude that impairment of mitochondrial Ca2+ transport has no impact on either L-type Ca2+ currents or SR Ca2+ release at low stimulation frequencies (e.g. 0.1 Hz); however, it causes a depression of cytosolic Ca2+ transients attributable to an impaired recovery of L-type Ca2+ currents from inactivation at high stimulation frequencies (e.g. 3 Hz). The impairment of mitochondrial Ca2+ uptake and subsequent effects on Ca2+ transients at high frequencies at room temperature could be physiologically relevant since the normal heart rate of rat is around 5 Hz at body temperature. The role of mitochondria in clearing Ca2+ in the micro-domain near L-type Ca2+ channels could be impaired during high frequencies of heart beats such as in ventricular tachycardia, explaining, at least in part, the reduction of muscle contractility

Topics: Research Reports
Publisher: Blackwell Science Inc
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.