Catalytic Hydrogen Evolution by Fe(II) Carbonyls Featuring a Dithiolate and a Chelating Phosphine
Authors
Publication date
1 September 2014
Publisher
'American Chemical Society (ACS)'
Doi
Abstract
abstract: Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P[subscript 2] [bdt = benzene-1,2-dithiolate; P[subscript 2] = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fe[subscript d]) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF[subscript 4]·OEt[subscript 2], triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO][superscript +] that can be reversibly converted back to 1 by deprotonation using NEt[subscript 3]. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)[superscript +] susceptible to external CO binding
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.