Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation

Abstract

Real time, density matrix based, time dependent density functional theory (TDDFT) proceeds through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals. It is possible to reduce the computational workload by imposing spatial cutoff radii on sparse matrices, and the propagation of the density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. Following a brief summary of our implementation, along with several benchmark tests illustrating the validity of the method, we present an exploration of the factors affecting the accuracy of the approach. In particular, we investigate the effect of basis set size and matrix truncation, the key approximation used in achieving linear scaling, on the propagator unitarity and optical spectra. Finally, we illustrate that, with an appropriate density matrix truncation range applied, the computational load scales linearly with the system size and discuss the limitations of the approach

Similar works

This paper was published in UCL Discovery.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.