Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

Abstract

Static strain in complex oxide heterostructures has been extensively used to engineer electronic and magnetic properties at equilibrium. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3_3 substrate we induce magnetic order melting in a NdNiO3_3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed device

Similar works

Full text

thumbnail-image

DESY Publication Database

redirect
Last time updated on 28/02/2017

This paper was published in DESY Publication Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.