WIMP Dark Matter and Unitarity-Conserving Inflation via a Gauge Singlet Scalar

Abstract

A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgs Inflation, provided the singlet is a real scalar. The 2-σ\sigma Planck upper bound on nsn_s imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T

Similar works

Full text

thumbnail-image

DESY Publication Database

redirect
Last time updated on 28/02/2017

This paper was published in DESY Publication Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.