Structural characterization of the epitaxially grown core–shell ZnTe/ZnMgTe nanowires

Abstract

We report the method of the epitaxial growth of the core–shell ZnTe/ZnMgTe nanowires. The morphology and the crystal structure of several samples grown in different processes have been studied by scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction methods. It was shown that the ZnMgTe shell growth was clearly epitaxial with a good crystal quality. The average lattice spacing of the ZnTe cores and ZnMgTe shells have been calculated and Mg content in the shells has been estimated. It was documented that growing the shell lattice mismatched to the core induces the strain in the core. The model of the strain creation mechanism has been proposed. The presence of a shell with a larger energy gap than that of the core results in a strong emission in the spectral region near the band edge

Similar works

Full text

thumbnail-image

DESY Publication Database

redirect
Last time updated on 28/02/2017

This paper was published in DESY Publication Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.