Cation characterization and CO2 capture in Li+-exchanged metal-organic frameworks: From first-principles modeling to molecular simulation

Abstract

We report a computational study for cation characterization and CO2 capture in Li+-exchanged metal-organic frameworks (Li+-MOFs). Density functional theory is adopted to optimize cation locations and evaluate atomic charges, and molecular simulation is subsequently used to examine the separation of CO2/H2 and CO2/N2 mixtures for pre- and post-combustion CO2 capture. The cations are observed to locate near the carboxylic O-donors of metal clusters. Specifically, H+ ions in dehydrated Li+-MOF form covalent bonds with the O-donors, and H3O+ ions in hydrated Li+-MOF form hydrogen bonds with the O-donors. CO2 is overwhelmingly adsorbed over H2 and N2 in both dehydrated and hydrated Li+-MOFs. Adsorption occurs preferentially near the cations and metal clusters, which possess strong electrostatic potentials, and then in the square channels. At ambient condition, the selectivity is approximately 550 for CO2/H2 mixture and 60 for CO2/N2 mixture, higher than that in nonionic MOFs and other nanoporous adsorbents. The charges of framework and cations have a significant effect on the selectivity, which is found to decrease by 1 order of magnitude by switching off the charges. The hydration of cations in Li+-MOF leads to a reduced free volume and consequently a lower extent of adsorption

Similar works

Full text

thumbnail-image

Research Repository RMIT University

redirect
Last time updated on 28/02/2017

This paper was published in Research Repository RMIT University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.