Study of the structural and dynamic effects in the FimH adhesin upon α-d-heptyl mannose binding.

Abstract

Uropathogenic Escherichia coli cause urinary tract infections by adhering to mannosylated receptors on the human urothelium via the carbohydrate-binding domain of the FimH adhesin (FimHL). Numerous α-d-mannopyranosides, including α-d-heptyl mannose (HM), inhibit this process by interacting with FimHL. To establish the molecular basis of the high-affinity HM binding, we solved the solution structure of the apo form and the crystal structure of the FimHL-HM complex. NMR relaxation analysis revealed that protein dynamics were not affected by the sugar binding, yet HM addition promoted protein dimerization, which was further confirmed by small-angle X-ray scattering. Finally, to address the role of Y48, part of the "tyrosine gate" believed to govern the affinity and specificity of mannoside binding, we characterized the FimHL Y48A mutant, whose conformational, dynamical, and HM binding properties were found to be very similar to those of the wild-type protein.info:eu-repo/semantics/publishe

Similar works

Full text

thumbnail-image

DI-fusion

redirect
Last time updated on 23/02/2017

This paper was published in DI-fusion.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.