Skip to main content
Article thumbnail
Location of Repository

Fabrication and characterisation of multilayer test structures for coated conductor cylinder technology

By Joseph Leo Tanner


The construction of a multi-layered, multi-turn coated conductor cylinder encompasses several aspects that may limit its performance unless they are designed and fabricated in a suitable way. This project investigates the optimum thicknesses of YBa\(_2\)Cu\(_3\)O\(_7\)\(_-\)\(_8\) (YBCO) superconductor and SrTiO\(_3\) (STO) insulator layers, interconnect design between YBCO layers and the fabrication process for defining tracks in the YBCO. Test samples were produced by pulsed laser deposition (PLD), photolithographic and ion-beam and chemical etching techniques and were characterised by AC susceptibility, transport measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The growth conditions produce a YBCO film that develops a strong texture even over an ion-beam milled edge. Additional steps were required to remove contaminants from the surface after photolithographic processes, with both ion-beam milling and alkaline etch proving effective. Interconnects were successfully fabricated and were most effective when a large step was ion-beam milled into the first YBCO layer, rendering a critical current density (Jc) of 8.58x10\(^5\)A/cm\(^2\). Electrical transport through a crossover was made possible by the application of an additional etching process to create a more gentle slope although further optimisation is required to improve epitaxial growth on the track edge

Topics: TN Mining engineering. Metallurgy
Year: 2010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.