Deletion of GABA-B receptor in schwann cells regulates remak bundles and small nociceptive C-fibers

Abstract

The mechanisms regulating the differentiation into non-myelinating Schwann cells is not completely understood. Recent evidence indicates that GABA-B receptors may regulate myelination and nociception in the peripheral nervous system. GABA-B receptor total knock-out mice exhibit morphological and molecular changes in peripheral myelin. The number of small myelinated fibers is higher and associated with altered pain sensitivity. Herein, we analyzed whether these changes may be produced by a specific deletion of GABA-B receptors in Schwann cells. The conditional mice (P0-GABA-B1fl/fl) show a morphological phenotype characterized by a peculiar increase in the number of small unmyelinated fibers and Remak bundles, including nociceptive C-fibers. The P0-GABA-B1fl/fl mice are hyperalgesic and allodynic. In these mice, the morphological and behavioral changes are associated with a downregulation of neuregulin 1 expression in nerves. Our findings suggest that the altered pain sensitivity derives from a Schwann cell-specific loss of GABA-B receptor functions, pointing to a role for GABA-B receptors in the regulation of Schwann cell maturation towards the non-myelinating phenotype. © 2014 Wiley Periodicals, Inc

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 01/02/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.