Cartilage, SOX9 and Notch signals in chondrogenesis

Abstract

Cartilage repair is an ongoing medical challenge. Tissue engineered solutions to this problem rely on the availability of appropriately differentiated cells in sufficient numbers. This review discusses the potential of primary human articular chondrocytes and mesenchymal stem cells to fulfil this role. Chondrocytes have been transduced with a retrovirus containing the transcription factor SOX9, which permits a greatly improved response of the cells to three-dimensional culture systems, growth factor stimulation and hypoxic culture conditions. Human mesenchymal stem cells have been differentiated into chondrocytes using well-established methods, and the Notch signalling pathway has been studied in detail to establish its role during this process. Both approaches offer insights into these in vitro systems that are invaluable to understanding and designing future cartilage regeneration strategies. © 2006 The Authors Journal compilation © 2006 Anatomical Society of Great Britain and Ireland

Similar works

Full text

thumbnail-image

The University of Manchester - Institutional Repository

redirect
Last time updated on 01/02/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.