Protective role of vitamins E and C against oxidative stress caused by intermittent cold exposure in aging rat's frontoparietal cortex

Abstract

This study examined the role of vitamins E and C in combating oxidative stress (OS) caused by intermittent cold exposure (ICE) in the frontoparietal cortex (FPC) of adult (3 months), late-adult (12 months), middle-aged (18 months) and old (24 months) male Wistar rats. Each age group was divided into sub-groups, control (CON), cold-exposed at 5 °C (C5), control supplementees (CON + S) and cold-exposed supplementees (C5 + S). The supplement was a daily dose of 400. mg vitamin C and 50. I.U. of. vitamin. E/kg body weight. Cold exposure lasted 2. h/day for 4 weeks. All age groups except the old showed an increase in the final body mass in the cold-exposed. The feeding efficiency was higher in the cold-exposed irrespective of age. OS as reflected in age-related increased levels of hydrogen peroxide, protein carbonyl, advanced oxidation protein products and malondialdehyde showed further increase with ICE in the FPC. However, vitamins E and C supplementation attenuated the ICE-induced OS. ICE depleted the levels of tissue vitamins E and C while supplementation resulted in increased levels. Further age emerged as a significant factor in ICE-induced stress and also the response to vitamins E and C supplementation. Behavioral studies are underway to examine the findings on ICE-induced oxidative injury in the FPC, and the prospects for using vitamins E and C in cold exposures in the aged. © 2012 Elsevier Ireland Ltd

Similar works

Full text

thumbnail-image

ePrints@Bangalore University

redirect
Last time updated on 01/12/2016

This paper was published in ePrints@Bangalore University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.