An effective thickness to estimate stresses in laminated glass beams under dynamic loadings

Abstract

Finite element models for estimating stresses and displacements in laminated glass elements under dynamic loadings are very time-consuming because (1) many small 3D elements are needed to model accurately all the layers of the sandwich element and (2) the core usually shows a time and temperature dependent behaviour. In the last years, the concept of effective thickness using a quasi-elastic solution has got the attention of the research community because of its simplicity and reasonable level of accuracy achieved in the calculation of laminated glass elements under static loadings. In this paper, a dynamic effective thickness to estimate stresses in laminated glass beams under dynamic loadings in the frequency domain is derived using the correspondence principle. The analytical equations are validated by experimental tests carried out on simply supported and free–free laminated glass beams at different temperatures in the range 20–40 °CThe economic support given by the Spanish Ministry of Education through the project BIA2011-28380-C02-01 and BIA2014-53774-R is gratefully appreciate

Similar works

Full text

thumbnail-image

Repositorio Institucional de la Universidad de Oviedo

redirect
Last time updated on 29/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: open access