On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles

Abstract

The turnover of ectomycorrhizal (EM) fungal biomass represents an important litter input into forest biogeochemical cycles. Cenococcum geophilum is a nearly ubiquitous and often abundant EM fungus, making the turnover dynamics of this species relevant and important across forest ecosystems. To better understand the turnover dynamics of C geophilum ectomycorrhizas we examined their persistence using minirhizotron imaging and vitality status using a fluorescein diacetate (FDA) stain and contrasted these results with ectomycorrhizas of other EM fungi. Ectomycorrhizas formed by C. geophilum persisted 4-10 times longer and exhibited contrasting seasonal patterns of vitality compared to ectomycorrhizas of other EM fungi. Together, this suggests that litter resulting from the death of C geophilum ectomycorrhizas is relatively recalcitrant to decay and may disproportionately influence forest biogeochemical cycles by retarding the rate at which carbon and nutrients are cycled. (C) 2013 Elsevier Ltd. All rights reserved

Similar works

Full text

thumbnail-image

Institutional Repository of Institute of Geographic Sciences and Natural Resources Research, CAS

redirect
Last time updated on 29/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.