High-temperature corrosion behavior of iron-aluminide alloys and coatings

Abstract

An Fe-28 at.% Al-2% Cr alloy doped with Y{sub 2}O{sub 3} showed improved scale adhesion relative to a dispersion-free form of the same composition. However, doping with CeO{sub 2} or La{sub 2}O{sub 3} was detrimental to oxidation behavior. A study of weld-overlay iron-aluminide coatings showed that, those with sufficiently high aluminum concentrations had sulfidation resistance in H{sub 2}S-H{sub 2}-H{sub 2}O-Ar at 800 C equivalent to the most resistant bulk iron aluminides. These corrosion-resistant coatings have the potential to be effective barriers in high-temperature sulfidizing environments provided the appropriate combinations of filler metal, process parameters, and substrate are used to produce adequate aluminum concentrations and minimal chromium contents. Exposures in an oxidizing/sulfidizing environment containing varying amounts of HCI at 450 and 550 C showed that Fe{sub 3}Al alloys had good corrosion resistance

Similar works

Full text

thumbnail-image

UNT Digital Library

redirect

This paper was published in UNT Digital Library.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.