Candidate glass-ceramic waste forms for immobilization of the calcines stored at the Idaho Chemical Processing Plant

Abstract

Candidate glass-ceramic waste forms for immobilizaion of the major types of calcines stored at the Idaho Chemical Processing Plant (ICPP) were synthesized and characterized. The waste forms were prepared by hot isostatically pressing a mixture 70 wt% of precompacted simulated non-radioactive calcine and 30 wt% additives (Silica and Al or Ti metal powders). The types of calcines stored in stainless steel Bin Sets at the ICPP are fluorinel/sodium (Fl/Na), alumina, zirconia, zirconia/sodium (Zr/Na), and zirconia-alumina (Zr-AD. In addition to the silica additive, glass-ceramics for Fl/NA and alumina calcines were prepared and characterized using ICPP soil and clay additives. The characteristics of the waste forms including density, elastic properties, chemical durability, glass and crystalline phases, phases separation, and the microstructure were investigated. The 28-day MCC-1 test for chemical durability was used for all the waste forms. In addition, the Product Consistency Test (PCI) was conducted for the glass-ceramics, and the normalized elemental releases in g/m{sup 2} were compared with the Environmental Assessment (EA) glass. The characteristics of the soil and clay glass-ceramics appear to be as good as the waste forms prepared with silica. The glass-ceramic waste forms recommended are: 5Ti-Clay, or 5Ti-SoiL or 5Ti-Silica for the fluorinel/sodium calcine-, Clay or silica for the alumina calcine; and 5Ti-Silica for the zirconia, Zr/Na, and Zr-Al calcines. Soil- and clay-based glass- ceramics offer an opportunity to incorporate contaminated waste into durable low volume waste forms

Similar works

This paper was published in UNT Digital Library.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.