The relative severity of radial (thermal) and inclined rolling contact fatigue surface cracks of equal depth in a railway wheel is investigated by three-dimensional elastoplastic finite element analyses of a cracked wheel sector subjected to contact loading. Response is quantified by relative displacements of nodes close to crack tip and at the crack mouth. Highly inclined cracks give the highest magnitudes of crack tip shear displacements, which is the dominant deformation mode. Braking conditions are found to open the crack mouth. Initially higher temperatures on thermal cracks cause increased crack tip deformation and opening of the crack, whereafter subsequent mechanical load cycles impose crack closure
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.