The effect of resonant magnetic perturbations on runaway electron transport in ITER

Abstract

In this paper the effect of resonant magnetic perturbations (RMPs) on the net radial transport of runaway electrons (REs) is calculated by simulating the RE drift orbits in magnetostatic perturbed fields. Through the transport, RMP influences the time dynamics and preferred loss directions of the REs, which are determined for different magnetic perturbation configurations. The distribution of the field mesh exit points of the REs become more localized compared with the unperturbed case, since the loss pattern depends on the geometric properties of the RMP configuration such as periodicity or helicity. On the other hand, the loss patterns do not depend on the particle energies and starting positions. The particle radial steps are correlated with the local radial magnetic perturbation component, which makes the transport chaotic, but deterministic

Similar works

Full text

thumbnail-image

Chalmers Publication Library

redirect
Last time updated on 19/11/2016

This paper was published in Chalmers Publication Library.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.