10.1111/j.1435-5957.2007.00125.x

Knowledge spillovers across Europe: Evidence from a Poisson spatial interaction model with spatial effects

Abstract

We apply a Bayesian hierarchical Poisson spatial interaction model to the paper trail left by patent citations between high-technology patents in Europe to identify and measure spatial separation effects of interregional knowledge flows. The model introduced here is novel in that it allows for spatially structured origin and destination effects for the regions. Estimation of the model is carried out within a Bayesian framework using data augmentation and Markov Chain Monte Carlo (MCMC) methods, related to recent work in Frühwirth-Schnatter and Wagner (2004). This allows MCMC sampling from well-known distribution families, and thus provides a substantial improvement over MCMC estimation based on Metropolis-Hastings sampling from non-standard conditional distributions. Copyright (c) 2007 the author(s). Journal compilation (c) 2007 RSAI.

Similar works

Full text

thumbnail-image

Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.