Convergence Rates for Logspline Tomography,

Abstract

We consider bivariate logspline density estimation for tomography data. In the usual logspline density estimation for bivariate data, the logarithm of the unknown density function is estimated by tensor product splines, the unknown parameters of which are given by maximum likelihood. In this paper we use tensor product B-splines and the projection-slice theorem to construct the logspline density estimators for tomography data. Rates of convergence are established for log-density functions assumed to belong to a Besov space.logspline models, tensor product B-splines, positron emission tomography, projection-slice theorem, Besov space, rate of convergence

Similar works

Full text

thumbnail-image

Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.