Article thumbnail

Multivariate quadratic forms of random vectors

By René Blacher


We obtain the distribution of the sum of n random vectors and the distribution of their quadratic forms: their densities are expanded in series of Hermite and Laguerre polynomials. We do not suppose that these vectors are independent. In particular, we apply these results to multivariate quadratic forms of Gaussian vectors. We obtain also their densities expanded in Mac Laurin series or in the form of an integral. By this last result, we introduce a new method of computation which can be much simpler than the previously known techniques. In particular, we introduce a new method in the very classical univariate case. We remark that we do not assume the independence of normal variables.Hermite polynomials Laguerre polynomials Fourier transforms Quadratic forms Gaussian vectors Moments

OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles