Magnon scattering by a symmetric atomic well in free standing very thin magnetic films


A theoretical model is presented for the study of the scattering of magnons at an extended symmetric atomic well in very thin magnetic films. The thin film consists of three cubic atomic planes with ordered spins coupled by Heisenberg exchange, and the system is supported on a non-magnetic substrate, and considered otherwise free from magnetic interactions. The coherent transmission and reflection scattering coefficients are derived as elements of a Landauer type scattering matrix. Transmission and reflection scattering cross sections are hence calculated specifically, as a function of the varying local magnetic exchange on the inhomogeneous boundary. Detailed numerical results for the individual incident film magnons, and for the calculated overall magnon conductance, show characteristic transmission properties, with associated Fano resonances, depending on the magnetic boundary conditions and on the magnon incidence. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200875.30.Ds Spin waves, 75.70.Ak Magnetic properties of monolayers and thin films, 75.75.+a Magnetic properties of nanostructures,

Similar works

Full text


Research Papers in Economics

Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.