Towards establishing climatic thresholds for slope instability: use of a physically-based combined soil hydrology-slope stability model

Abstract

— Shallow landslides are often linked to high magnitude rainstorms. Research has attempted to establish threshold rainfall totals that trigger shallow landslides, based mainly on field evidence. Complications arise because not all regolith has the same hydrological behaviour, and research frequently fails to take this into account. This paper uses a combination of field and modelling approaches to explore the triggering rainfall thresholds for shallow failures in deforested hill country of New Zealand. It emphasises the role of variations in regolith hydrology, focussing on unsaturated and saturated zone responses. By using a modelling approach, detailed variations in pore pressure (positive and negative) responses are investigated, developing ideas initially derived from field evidence. This paper defines and develops earlier research that establishes values for maximum and minimum probability thresholds for shallow landslides, and provides a more generalised model that can be applied more widely. Hydrological mechanisms for shallow landslides are investigated in greater detail than previously possible using a Combined Hydrology And Stability Model (CHASM™)

Similar works

Full text

thumbnail-image

Birkbeck Institutional Research Online

redirect
Last time updated on 17/11/2016

This paper was published in Birkbeck Institutional Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.