Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT) [extended abstract]

Abstract

Geoelectrical techniques, such as resistivity and self-potential are being increasingly applied to study the hydraulics of landslide processes. The great strengths of these techniques are that they provide spatial or volumetric information at the site scale, and are sensitive to hydraulic changes in the subsurface. In this study we described the development and installation of an automated time-lapse electrical resistivity tomography (ALERT) system on an active landslide at a site near Malton, North Yorkshire, UK. The overarching objective of the research is to develop a 4D landslide monitoring system that can characterise the subsurface structure of the landslide, and reveal the hydraulic precursors to movement. In this paper we describe the installation of the ALERT system on an active landslide, and present initial results showing the 3D structure of the landslide and subsurface resistivity variations that occurred between static conditions and an active phase of slope failure

Similar works

This paper was published in NERC Open Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.