Chemical composition of burnt smell caused by accidental fires: Environmental contaminants

Abstract

The chemical composition of the odors typical of fires has recently been deciphered. Basically the constituents are mixtures of acetophenone, benzyl alcohol, hydroxylated derivatives of benzaldehyde, methoxylated and/or alkylated phenols and naphthalene. This finding makes it possible to develop objective, practical analytic measurement methods for the burnt smell as a contribution to improving fire damage assessment and remediation monitoring. With the aid of an artificially produced burnt smell and a panel of testers the odor detection threshold of a test mixture was determined olfactometrically to 2 µg m<sup>-3</sup>. Using a defined burnt-smell atmosphere in a test chamber, analytical methods with active sampling, the adsorbents XAD 7 and TENAX TA, and GC/MS measurement were then optimized and tested with a view to being able to carry out sensitive quantitative measurement of burnt smells. A further practical method with particular application to the qualitative characterization of this odor is based on the use of a new SPME (solid-phase microextraction) field sampler with DVB/CAR/PDMS (divinylbenzene/Carboxen<sup>TM</sup>/polydimethylsiloxane) fibers

Similar works

Full text

thumbnail-image

Fraunhofer-ePrints

redirect
Last time updated on 15/11/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.