Skip to main content
Article thumbnail
Location of Repository

A simulation model for the development of an aspheric lens adjustment system

By Christian Bräuer-Burchardt, Susanne Zwick, Gunther Notni, Matthias Beier and Andreas Gebhardt

Abstract

A simulation model for the development of an aspheric lens adjustment system that is based on multi-point optical distance measurement is presented. Adjustment of aspheric lenses means the correction of decentering and tilt errors within the mount of the lens. The presented model includes the determination of decentering and tilt errors using distance measurement variation of the lens surface at certain radial positions over 360° rotation of the lens. However, the occurring noise in the distance measurement as well as an uncertainty in the distance sensor positioning lead to errors remaining after the determination of decentering and tilt by the new method. The size of these residual errors can be estimated by the presented simulation tool with statistical significance. The simulation model provides the possibility to use arbitrary noise values as input quantity. The individual aspheric lens design data, the number of chosen measurement positions, and the specified noise level determine the statistically expected residual error after lens adjustment. It provides the possibility to determine the optimal arrangement of the positions of the distance sensor and the number of repetitions for every given aspheric lens for the enforcement of the requested measurement accuracy. The newly developed simulation model is a necessary tool for a novel metrology method of the adjustment of aspheric lenses

Topics: aspheric lens adjustment, simulation model, optical distance measurement
Year: 2012
DOI identifier: 10.1117/12.981172
OAI identifier: oai:fraunhofer.de:N-225766
Provided by: Fraunhofer-ePrints
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://publica.fraunhofer.de/d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.