Simulation of wood particle motion through a concurrent triple-pass rotary dryer

Abstract

The retention time of solids in a drum is an important parameter for the design of rotary dryers, since it directly influences the mass and heat transfer rates. If it is too short, the wood particles do not become adequately dried. If it is too long, they become over-dried. Therefore, having an appropriate retention time is useful in terms of both energy and plant capacity. Wood particle mean retention time in a rotary dryer is affected by several variables, such as dryer dimensions, solid characteristics, and operational parameters. The purpose of this work was to simulate the effects of some wood particle characteristics and operational parameters on the mean retention time, drum holdup, and velocity of the wood particles during drying in a pilot-scale, closed-loop, triple-pass rotary dryer by means of a computer code. The simulation results of wood particle motion can be used for modeling, design, and optimization of closed-loop, triple-pass rotary dryers

Similar works

Full text

thumbnail-image

Fraunhofer-ePrints

redirect
Last time updated on 15/11/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.